
 

 

Groundwater Storage Estimates and Variability at 

the Sub-Region Level using NASA GRACE, 

C2VSim, and a Statistical Downscaling Approach 

C 
alifornia’s groundwater is an important resource for domestic, industrial, and agricultural uses.  To supplement current 
groundwater management techniques, satellites have been used to indirectly estimate changes in groundwater storage.  The 
Gravity Recovery and Climate Experiment (GRACE) is a satellite that uses anomalies in the Earth’s gravitational field to 

detect changes in total water storage (TWS) throughout the world.  Previous studies have shown comparable results for total 
groundwater change for the Central Valley Aquifer (CVA) from the DWR hydrologic model C2VSim and GRACE with similar 
seasonal, annual, and long-term trends. However, this data is not useful to local water managers who work on much finer scales. 
Thus, a statistical downscaling technique was developed to produce GRACE derived estimates on C2VSim’s sub-region level. 
Additionally, current groundwater estimates do not consider the influence of climatic variability. Therefore, the El Nino Southern 
Oscillation and the Pacific Decadal Oscillation were compared to GRACE total water storage and ground water storage estimates. 
This work has the potential to improve California’s groundwater management and use of existing hydrologic models for the CVA.  

 The California Central Valley aquifer (CVA) system [52,000 km2] is one of the 
world’s most productive agricultural regions and is the second most heavily pumped in 
the U.S. 11. It also supplies nearly 20% of the nation’s groundwater (GW) demand and 
provides nearly 7% of the United States (U.S.) food supply, with an estimated annual 
value of $21 billion 12,13. Although this is an important resource, the CVA is susceptible to 
population demands, extended periods of drought, and groundwater pumping. To 
improve estimates of groundwater change in the CVA, this study used the GRACE 
satellite along with the C2VSim hydrological model14,15. Although GRACE is a useful tool 
for large regions, the data are coarse, and cannot be used for regional groundwater 
management (Figure 3).  Therefore, the purpose of this study was twofold: first we 
statistically downscaled GRACE groundwater estimates to the sub-region scale.  These 
estimates were compared with the DWR’s hydrological model C2VSim.  Secondly, we 
correlated the downscaled GRACE data to climate 
cycles such as the El Niño Southern Oscillation 
(ENSO) and the Pacific Decadal Oscillation 
(PDO). This will provide a better understanding 
about how climate variability may affect 

Satellites Detect Total Water Changes 
 The GRACE sensor is a pair of twin satellites that 
fly in tandem orbits approximately 220 km apart (Figure 1). 
Based on changes in the distance between the two satellites 
to a precision of 1µm, GRACE measures monthly 
gravitational anomalies (deviations from a 10-year average) of 
the Earth. Gravitational anomalies are attributed to changes 
in the Earth’s hydrologic cycle which are used to calculate 
total water storage (TWS) anomalies of the Earth1.  TWS 
anomalies represent the sum of all hydrologic components 
including changes in snow, ice, reservoirs, soil moisture, and 

groundwater. Data obtained from GRACE are processed at the Jet Propulsion Laboratory 
(JPL) processing center to generate measurements of TWS anomalies. Numerous satellites, 
models, and ground data are used to generate values for the other hydrologic components 
which are subtracted from the TWS values to calculate groundwater storage changes. 
Understanding groundwater storage changes from the GRACE satellite may help determine 
changes induced from pumping, or drought as a function of natural climate variability.  
 Previous studies from all over the world demonstrate the use of this satellite for 
groundwater storage assessment2,3,4,5,6,7. GRACE Release 5 data were provided by Dr. Felix 
Landerer, a GRACE expert at JPL. The GRACE data was processed and clipped to the 
Central Valley Hydrologic Region (Figure 2). To calculate changes in groundwater storage, 
changes surface water storage from CDEC (SW)8, soil moisture from GLDAS NOAH (SM)9, 
and snowpack from SNODAS (SP)10 must be subtracted from TWS.  

Figure 1: The  GRACE satellite  
orbiting Earth (NASA, 2011). 

Figure 3: The study area, highlighting the 
Central Valley aquifer (yellow) and the hydro-
logic basins of California (green).  All changes 
in the hydrologic basins are assumed to be 
represented in the Central Valley aquifer.  

An Introduction to California’s Groundwater 

Figure 2: Area of the modeled GRACE 
dataset compared to the outline of the 
Sacramento and San Joaquin hydrologic 
regions.  



 

 

Natural climate variability is associated with changes in precipitation distribution (in 
space and time), temperature fluctuations, drought occurrence and severity, and 
streamflow18,19,20,21. The El Niño Southern Oscillation (ENSO) and the Pacific Decadal 
Oscillation (PDO) affects precipitation distribution and subsequently GW availability. ENSO has 
a 2–7 year periodicity and the PDO has a 10­­–25 year periodicity. In general, California receives 
more precipitation during the positive phase and less precipitation during the negative phase18,20,21. 
To address how groundwater changes during these natural cycles, we used singular spectral 
analysis to identify whether patterns in downscaled GRACE GW estimates were similar to natural 
climate variability.  Each of the 21 sub-region GW estimates were time-lagged correlated to 
ENSO and PDO time-series to determine which climate cycle influenced GW at the statistically 
significant level.  

GRACE TWS estimates for the entire Central Valley are moderately correlated with 
both ENSO (average of 0.16) and PDO (average of 0.42), with stronger correlations observed in 
the southern regions compared to the northern regions and slightly higher correlations to the 
PDO (Figure 7). Additionally time-lagged correlations of downscaled GRACE GW estimates are 

moderately correlated with both ENSO (range of 0.14−0.41) and PDO (range of 0.12−0.57), with 
similar spatial and correlation patterns. These results show how GW may be affected by variations 
in climate and how those effects may vary throughout the Central Valley and can be useful for 
future water resource management. 

Statistical downscaling is a method of acquiring information known at large spatial scales 
and using ancillary information to make predictions at local scales 16. Downscaling methods 
are often used in climate studies, and have also been used in GRACE GW studies 17. To 
begin the process, GW storage anomalies were calculated by subtracting SM, SP, and SW 
from TWS. We followed a method developed by Hoar and Nychka [2008]16 and 
implemented three important steps: 1) 
develop a statistical relationship 

between the prediction data (data from the hydrological model C2VSim) and a 
spline of the same data for every location and for every month; 2) obtain an initial 
estimate of the data from the data to be downscaled (GRACE); and 3) apply the 
linear model from step 1 to the initial value in step 2 to produce the final 
downscaled estimate 16.  

Calculated total GW storages estimates (not yet downscaled) for the 
CVA from both GRACE and C2VSim were similar with a total change in GW 
storage of -20.6 ± 3.01 km3 and -20.7 ± 7.57 km3, for GRACE and C2VSim, 
respectively from October 2004-September 2009 (Figure 4). Downscaled GRACE 
results compared to C2VSim by region (Figure 5) show a similar spatial trend and 
when comparing total changes for every sub-region, show strong agreement 
(Figure 6) (R2 = 0.63, p < 0.01 and RMSE = 0.61 km3).  

Figure 7: Representation of the GRACE 
calculation of groundwater storage.  

Figure 4: Total change in groundwater storage for the CVA 
calculated by C2VSim and GRACE (non-downscaled). 

Figure 5: Total change in GW storage calculated by C2VSim and the downscaled GRACE 
estimates from October 2004-September 2009. 

Climate Variability Analysis 

Downscaling GRACE-derived Groundwater Storage Estimates 

For the study period, GRACE calculated 
a total loss of groundwater storage of –

20.6± 7.57 km3 and C2VSIM a total 
loss of –20.7± 3.01 km3 

Figure 6: Comparison of total change in downscaled GRACE GW 
storage and C2VSim for each sub-region.   



 

 

This study successfully created a prototype application for 
downscaling GRACE GW anomalies to the sub-region scale that may 
be useful for DWR and regional water agencies. However, 
improvements to this methodology may be necessary, such as 
developing a better estimate of splined C2VSim data and conducting an 
error analysis for each of the 21 sub-regions. With these improvements, 
the use of downscaled GRACE data could provide water management 
agencies with more up-to-date estimates of GW storage than currently 
used techniques. This study also successfully addressed the influence of 
climate variability on GW storage within the CVA using multiple 
GRACE TWS and GW datasets. We observed moderate correlations to 
both the ENSO and PDO, with stronger correlations in the southern 
portions of the CVA. To more confidently determine the effects of long
-term climate cycles on water availability, a longer time series of TWS 
and GW storage must be used.  Finally, forecasting may be used to 
estimate long-term trends related to climate variability in California. 
Improvements in estimating GW storage availability within the CVA 
will better prepare agencies such as the DWR with useful information 
for water resource management in California.   

 

  

Figure 8: The Pine Flat Dam on the Kings River.  
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